

Persistent Memory
Why? Because existing hot-tier storage:
● is too slow
● requires kernel syscalls to access
● is not byte-addressable, thus requires copying

HDD (spinning rust)

tape, etc

DCPMEM

DRAM

SSD (flash)

co
st

per
GB

latency

NVDIMM-N
Regular DRAM with a battery and some flash glued on,
saves its contents on power loss.
● as much DRAM as flash: full DRAM speed
● more flash than DRAM: speed degrades to disk speeds

once workload size goes beyond DRAM

(ie, hardware-assisted swap)

Optane DC PMEM
● New type of internal medium (3D Xpoint).
● Slower than DRAM, much faster than flash.
● Current gen: Apache Pass.

How fast?
Alas, all benchmarks lie.

Especially vendor benchmarks.

So let’s look at a paper from U of California:

https://arxiv.org/pdf/1903.05714.pdf

Latency of small random reads
● HDD: 20-5ms
● SSD: 100μ-25μs (2019 high-end NVMe)
● Apache Pass: 305ns random, 169ns predictable

(UoC data)
● DRAM: 81ns (UoC data)

Bandwidth of linear reads
● Apache Pass: ~40GB/s on single CPU socket

(UoC data)

But what about writes?
What do you mean by “the write is complete”?

It takes a long time to settle. But we can do many
staggered writes in parallel.

Which could bite on an unexpected power loss…
unless there’s a battery, a supercap, a gas-driven
generator, etc. And if we know we’re going down.

ADR
All current implementations of persistent memory
require a notification of power going down. This is
done via a special hardware link, called ADR.

Once the signal is sent, all pending writes get
finalized.

Bad news
Alas, hardware you have likely has no ADR yet.

It requires support both from CPU and
motherboard. Thus sorry, you need to buy new
gear to put these shiny NVDIMMs into.

Emulation
On x86: append to kernel’s cmdline:

memmap=4G!16G

to get 4GB of emulated pmem (at 16th gigabyte).

On non-x86 use device tree:

Documentation/devicetree/bindings/pmem/pmem-region.txt

But that’s hardware… what about support in
software?

memory mode
Needs no software but ipmctl to set it up.
● uncached: used same as any other memory
● cached: takes all your DRAM to use as a

“cache”. A cacheline not present in DRAM will
be fetched (swapped in) from pmem.

manual allocations: libvmem
Provides a malloc-like interface, so you can mix
regular malloc() from DRAM for hot data, with
vmem_malloc() for colder stuff.

Yet, using libvmem is not a good idea.

memkind
Modern machines tend to be NUMAed. A cross-
socket/chiplet access takes a long time.

memkind does all what vmem could, but also
knows about NUMA and other “kinds” of memory
than pmem, such as HBW.

kernel: HMEM
A hybrid approach between hardware memory
mode and manual allocations: in the absence of
hints, the kernel will guess what you want, and
migrate pages automatically, avoiding migrating a
page you use just once.

as disk
You can use pmem same as a regular disk. Just

mkfs.ext4 /dev/pmem0

and that’s… it?

write atomicity
Alas, not. Traditional disks, both HDD and SSD,
guarantee block atomicity: a whole sector is either
written completely or not at all. Persistent
memory offers only 8-byte atomicity, which leads
to torn writes on unaware software.

sector mode
Using ndctl, you can set a a region (“namespace”)
into “sector mode” that does emulate a traditional
block device, via something akin to FTL. But this
has a speed penalty.

fsdax
Once you know no software you use relies on such
block atomicity, you can do all writes in-place.
But that still requires the old read()+write()
interface (or mmap() with msync()s).

DAX
But, as pmem is memory, can’t you write to it…
directly? Sure you can: mount with -o dax
(supported by ext4 and xfs, soon btrfs) but the
processor will then keep your data in its cache for
a long time, potentially forever.

userspace flushes
After writing to memory, you can use an
unprivileged instruction like CLFLUSH,
CLFLUSHOPT or CLWB to tell the processor you
want that data to committed to the memory (it was
in L1/L2/L3 cache until then). As this is highly
processor-dependant, use libpmem for that.

flushing, ordering, etc
Alas, even with libpmem, you need to observe
discipline, always flushing (and draining the flush)
every thing you wrote.

This tends to be hard to get right.

persistent leaks
The vast majority of uses need some kind of
allocations. But, once you allocate a piece of
memory, you need two actions: to mark it as
allocated, and to link it to whatever data structure
you use. And the power loss can happen at any
moment.

libpmemlog
There are some special cases, like an append-only
(or ring) log. Here, you can just write past the end
of already used memory, flush, then update the
end-pointer. Thanks to 8-byte atomicity, that’s
easy to do.

libpmemblk
Another common case is a set of uniform-sized
blocks that need to be written atomically. This can
be done by libpmemblk which uses a sort of FTL-
like structure.

libpmemobj
And for the complex case, when you have objects
of different sizes, there’s pmemobj which does the
allocations and persistency for you.

atomic API
Within libpmemobj, one of the APIs can do the
aforemented crash-safe allocating and linking.

You reserve a piece of memory, initialize it, then once
you’re done, you request to atomically mark that
reservation as allocated, and link it into your
structure.

transactional API
Or alternatively, you can request a series of
operations to be done as a transaction. All writes
you do are logged, allowing for previous contents
to be restored in case of an unexpected power
loss.

libpmemobj-cpp
Alas, using libpmemobj from C code is unwieldy,
requires obscure syntax, peppered with macros. C++
allows wrapping that complexity.

The library also provides a set of STL-like containers.

Persistency is overrated
But, why can’t I just use an UPS? Yes, UPSes fail,
but so do disks, and these fancy new DIMMs.

Persistency is overrated
… unless you can replicate it

pool replicas
All the high-level libraries (libpmemlog,
libpmemblk, libpmemobj) can duplicate operations
you do into multiple pools. The pools may be
somewhere else on the same machine (local), or...

RDMA
A pool can be accessed remotely. This can in theory
be done using a regular network, but with speeds
involved, there’s no point to even bother.

But, a RDMA-capable NIC (“RNIC”) can copy memory
writes from one machine, send it to another, and
persist without the CPU even knowing about that.

RDMA
● In buster: one-way replication only. The target

system can’t even read the data while it’s used as a
replication slave. It’s good for a hot standby.

● Being implemented: 1 read-write node, slaves can
read but not write.

● Future: …?

use of this stack
As of Buster, no outside package uses the PMDK stack
yet. There’s upstream code in qemu, fio and ceph (not
enabled in Debian yet) – but most of the support still
needs to be written. There’s a bunch of unmerged
upstream patchsets, forks, and so on…

No ETACS yet.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

